Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668516

RESUMO

To study the spatiotemporal variability of particle-bound polycyclic aromatic hydrocarbons (PAHs) and assess their carcinogenic potential in six contrasting urban environments in Greece, a total of 305 filter samples were collected and analyzed. Sampling sites included a variety of urban background, traffic (Athens, Ioannina and Heraklion), rural (Xanthi) and near-port locations (Piraeus and Volos). When considering the sum of 16 U.S. EPA priority PAHs, as well as that of the six EU-proposed members, average concentrations observed across locations during summer varied moderately (0.4-2.2 ng m-3) and independently of the population of each site, with the highest values observed in the areas of Piraeus and Volos that are affected by port and industrial activities. Winter levels were significantly higher and more spatially variable compared to summer, with the seasonal enhancement ranging from 7 times in Piraeus to 98 times in Ioannina, indicating the large impact of PAH emissions from residential wood burning. Regarding benzo(a)pyrene (BaP), an IARC Group 1 carcinogen and the only EU-regulated PAH, the winter/summer ratios were 24-33 in Athens, Volos, Heraklion and Xanthi; 60 in Piraeus; and 480 in Ioannina, which is afflicted by severe wood-burning pollution events. An excellent correlation was observed between organic carbon (OC) and benzo(a)pyrene (BaP) during the cold period at all urban sites (r2 > 0.8) with stable BaP/OC slopes (0.09-0.14 × 10-3), highlighting the potential use of OC as a proxy for the estimation of BaP in winter conditions. The identified spatiotemporal contrasts, which were explored for the first time for PAHs at such a scale in the Eastern Mediterranean, provide important insights into sources and controlling atmospheric conditions and reveal large deviations in exposure risks among cities that raise the issue of environmental injustice on a national level.

2.
Sci Total Environ ; 915: 170042, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232850

RESUMO

Ultrafine particles (UFP) are recognized as an emerging pollutant able to induce serious health effects. However, quantitative information regarding the contributions of UFP sources is generally limited. This study evaluates statistical (k-means clustering) and receptor models (Positive Matrix Factorization - PMF) using particle number size distributions (PNSD), along with chemical speciation data, measured at an urban background supersite in Athens, Greece, aiming to characterize their sources. PNSD measurements (10-487 nm) were performed during three distinct periods (warm, cold, and lockdown cold). Traffic and residential biomass burning (BB) produced high UFP number concentrations (NUFP) in the cold period (+107 % compared to summer), while the lockdown restrictions reduced NUFP (-42 %). The five groups produced by cluster analysis that were common among periods were linked to high- and low-traffic, new particle formation (NPF), urban background and regional aerosols. PMF source apportionment identified 5 and 6 factors during warm and cold periods, respectively, indicating that traffic particles dominated NUFP (64-78 % in all periods), while accumulation-mode particles and volume concentrations were controlled by processed aerosol, and especially in the cold periods by BB emissions. A nucleation factor linked to NPF contributed 7-11 % to NUFP. Comparing the two cold periods (business-as-usual, lockdown), important lockdown reductions (-46 %) were seen for fresh traffic contributions to total number concentration (Ntotal). The impact of the source attributed to NPF also eroded (-41 % for Ntotal). Due to the large reduction (-47 % for Ntotal) observed also for the BB source during the lockdown (reduced wood usage due to a milder winter), the relative contributions of all sources did not change considerably (fractional reductions <7 % for Ntotal). The quantitative results, bolstered by source apportionment combining PNSD and online chemical composition measurements, indicate the potential to constrain UFP levels by regulating traffic and residential emissions, with a large upside for population exposure control.

3.
Environ Sci Technol ; 56(22): 15290-15297, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36318938

RESUMO

97% of the urban population in the EU in 2019 were exposed to an annual fine particulate matter level higher than the World Health Organization (WHO) guidelines (5 µg/m3). Organic aerosol (OA) is one of the major air pollutants, and the knowledge of its sources is crucial for designing cost-effective mitigation strategies. Positive matrix factorization (PMF) on aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) data is the most common method for source apportionment (SA) analysis on ambient OA. However, conventional PMF requires extensive human labor, preventing the implementation of SA for routine monitoring applications. This study proposes the source finder real-time (SoFi RT, Datalystica Ltd.) approach for efficient retrieval of OA sources. The results generated by SoFi RT agree remarkably well with the conventional rolling PMF results regarding factor profiles, time series, diurnal patterns, and yearly relative contributions of OA factor on three year-long ACSM data sets collected in Athens, Paris, and Zurich. Although the initialization of SoFi RT requires a priori knowledge of OA sources (i.e., the approximate number of factors and relevant factor profiles) for the sampling site, this technique minimizes user interactions. Eventually, it could provide up-to-date trustable information on timescales useful to policymakers and air quality modelers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Cidades , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise
4.
High Blood Press Cardiovasc Prev ; 29(6): 619-624, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36306104

RESUMO

INTRODUCTION: Fine particulate matter with an aerodynamic diameter < 2.5 µm (PM2.5) in the ambient air has been associated with increased blood pressure (BP) levels and new-onset hypertension. However, the association of BP with a sudden upsurge of PM2.5 in extreme conditions has not yet been demonstrated. AIM: To evaluate the association between PM2.5 pollutants the week before, during, and the week after the 2021 wildfires in Athens (Greece) and home BP measurements. METHODS: Home BP measurements were performed, and the readings were transferred to the doctor's office through a telemonitoring system on the patient's Smartphone application. Data from a calibrated, sensor-based PM2.5 monitoring network assessed PM2.5 exposure. RESULTS: PM2.5 pollutants demonstrated a gradual surge while the particle concentration was not different in the selected air pollution measurement stations. A total of 20 consecutive patients with controlled hypertension, mean age 61 ± 9 years, were included in the analysis. For one unit in µg/m3 increase of PM2.5 particle concentration, an average of 2.1 mmHg increment in systolic BP was observed after adjustment for confounders (P = 0.023). CONCLUSIONS: Our findings raise the hypothesis that short-term exposure to raised PM2.5 concentrations in the air appears to be associated with increases in systolic home BP." Telemonitoring systems of home BP recordings may provide important information for the clinical management of hypertensive patients, at least in conditions of major environmental disturbances, such as wildfires.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hipertensão , Incêndios Florestais , Humanos , Pessoa de Meia-Idade , Idoso , Pressão Sanguínea , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Hipertensão/diagnóstico , Hipertensão/epidemiologia
5.
Sci Total Environ ; 800: 149389, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426353

RESUMO

Levels and sources of non-Methane Hydrocarbons (NMHCs) were investigated at the urban background Thissio station, close to the historical center of Athens (Greece) from March 2016 to February 2017 (12 months), by means of an automated GC-FID. Alkanes dominated over aromatics and alkenes, with hourly mean levels ranging from detection limit up to 60 µg m-3 for i-pentane and 90 µg m-3 for toluene. Higher levels were recorded in the cold period relative to the warmer one. In addition, NMHCs seasonal diurnal cycles were characterized by a bimodal pattern, following the trend of tracers of anthropogenic sources. The Positive Matrix Factorization (PMF) was used for the allocation of NMHC to their sources. Five factors were identified and quantified, with traffic-related sources being the main one contributing up to 60% to total NMHCs, while biomass burning contributes up to 19%. A supplementary PMF assimilation was applied on a seasonal basis further including α-pinene, C6-C16 alkanes and aromatics. This PMF resulted to a seven-factor solution that allowed the examination of two additional sources, in addition to five already identified, highlighting the main contribution of anthropogenic sources (70%) to α-pinene.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Atmosfera , Biomassa , Hidrocarbonetos/análise , Metano
6.
Artigo em Inglês | MEDLINE | ID: mdl-31237472

RESUMO

Athens, Greece has been in economic and social crises after the 2008 global recession, resulting in an increase in wood burning as a cheaper method of residential heating in the winter. Reducing wood burning emissions is a source-specific method to address air quality degradation, and indirectly climate change, through instituting policies aimed at human health co-benefits. In this work, we investigate and quantify the potential health co-benefits from policies reducing outdoor particulate matter (PM) pollution from residential wood burning by assessing the pollution conditions during the 2015 calendar year in Athens, Greece, emphasizing vulnerable populations. We conducted a systematic literature search to extract data regarding effective improvements to outdoor PM due to wood burning interventions, and get a range of potential ambient PM reduction estimates regarding realistic benefits from different interventions. We applied a health impact assessment methodology and used existing Athens specific data to calculate the preventable daily average non-accidental deaths associated with reducing PM, additionally considering low and high socioeconomic status (SES) groups. We found that the reduction in outdoor PM concentration showed the potential to benefit lower SES groups as much as 13.5 times more than the high SES group, representing an opportunity for policies to improve not only the health of the total population but also improve environmental equity and health disparities.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Avaliação do Impacto na Saúde , Calefação , Habitação/normas , Material Particulado/análise , Madeira/química , Poluição do Ar em Ambientes Fechados/efeitos adversos , Mudança Climática , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Política Ambiental , Grécia , Humanos , Modelos Teóricos , Material Particulado/toxicidade , Estações do Ano
7.
Sci Total Environ ; 592: 115-123, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28319698

RESUMO

To evaluate the role of biomass burning emissions, and in particular of residential wood heating, as a result of the economic recession in Greece, carbon monoxide (CO) atmospheric concentrations from five (5) stations of the National Air Pollution Monitoring Network in Athens, spanning the period 2000-2015, in conjunction with black carbon (BC) concentrations from the NOA (National Observatory of Athens) station at Thissio were analysed. The contribution of the different sources to the diurnal cycle of these two pollutants is clear, resulting to a morning peak, mainly due to traffic, and a late evening peak attributed both to fossil fuel (traffic plus central heating) and biomass combustion. Calculated morning and evening integrals of CO peaks, for the investigated period, show consistent seasonal modulations, characterised by low summer and high winter values. The summer and winter morning CO peak integrals demonstrate an almost constant decreasing trend of CO concentrations over time (by almost 50% since 2000), attributed to the renewal of passenger car fleet and to reduced anthropogenic activities during the last years. On the other hand, an increase of 23%-78% (depending on the monitoring site) in the winter evening integrals since 2012, provides evidence of the significant contribution of biomass combustion, which has prevailed over fossil fuel for domestic heating. CO emitted by wood burning was found to contribute almost 50% to the total CO emissions during night time (16:00-5:00), suggesting that emissions from biomass combustion have gained an increasing role in atmospheric pollution levels in Athens.


Assuntos
Poluição do Ar/análise , Biocombustíveis , Monóxido de Carbono/análise , Monitoramento Ambiental , Combustíveis Fósseis , Poluentes Atmosféricos , Biomassa , Cidades , Grécia , Material Particulado
8.
Appl Opt ; 44(9): 1681-90, 2005 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-15813271

RESUMO

We present three different methods for the absolute calibration of direct spectral irradiances measured with a Brewer spectroradiometer, which are shown to agree to within +/- 2%. Direct irradiance spectra derived by Brewer and Bentham spectroradiometers agree to within 4 +/- 3%. Good agreement was also found by a comparison of the aerosol optical depth and Angstrom exponent retrieved by the two instruments and a multifilter rotational shadowband radiometer. The spectral aerosol optical depth (300-365 nm) derived from six years of direct irradiance measurements at Thessaloniki shows a distinct seasonal variation, averaging to approximately 0.3 at 340 nm in winter and approximately 0.7 in summer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...